Table-top EUV/XUV source

Generating 2-20 nm wavelength radiation

Spectrum of electromagnetic radiation

Principle of laser-produced plasma

Laser-Laboratorium Göttingen e.V.

> High-energy laser focused on gaseous target

Emission spectra depending on target gas

Principle of laser-produced plasma

- Solid target for highbrilliant plasmas
- Emission spectra depending on target material

- Image of EUV plasma
- Diameter ~ 50µm (FWHM)

Laser-produced plasma

NEXAFS spectroscopy

Near-edge x-ray absorption fine-structure spectroscopy

NEXAFS - Principle

Laser-Laboratorium Göttingen e.V.

> Absorption-edges in the XUV wavelength range (selected elements)

Fine-structure at absorption edge

- molecular orbitals
- oxidation states
- coordination of an absorbing element

NEXAFS - Setup Laser-Laboratorium Göttingen e.V. Table-top system Nd:YAG Laser "Single-shot" ns : (600mJ, 7ns, 1Hz) ps : (530mJ, 170ps, 5Hz) Pump-probe exp. Blende (d = 5 mm) Mikrometertisch zur Rückseitig-gedünnte CCD-Kamera 100 µm Spalt + Al-Filter (200 nm) Probenpositionierung XUV plasma (Kr) with pinhole camera Krypton Gas-Target Gitter (2400 l/mm) Quellkammer Probenkammer Spektrometer (1 - 7 nm) ≈ 400

NEXAFS - Measurement

Laser-Laboratorium Göttingen e.V.

Emission spectra of Krypton with and without sample

> NEXAFS spectrum of Polyimide

Setup of NEXAFS Spectrometer

Laser-Laboratorium Göttingen e.V.

XUV – NEXAFS (2-5 nm)

EUV – NEXAFS (7-16 nm)

NEXAFS - Results I

Laser-Laboratorium Göttingen e.V.

Lipid membranes (carbon K-edge)

Laser-Laboratorium Göttingen e.V.

PCMO (Perovskite-type manganate)

EUV damage

Material interaction studies with 13.5 nm radiation

Motivation for EUV damage

Laser-Laboratorium Göttingen e.V.

intel

- Higher processor speed
 - \rightarrow need for smaller feature sizes
- Current wavelength: 193 nm
- Next generation Litography: 13.5nm

- Highest absorption
- Penetration depths of ~ 10-300 nm only
- Structuring / surface modification

Disputation Frank Barkusky

EUV Schwarzschild Objective

Laser-Laboratorium Göttingen e.V.

Schwarzschild Objective

- > Magnification 10:1
- ► High numerical apterture (0.4)
- Generation of highest energy densities

IOF

Fraunhofer Institut Angewandte Optik und Feinmechanik

Setup for EUV Damage: Picture

EUV-damage: Polymer ablation

Laser-Laboratorium Göttingen e.V.

> High-resolution direct structuring of PMMA

> Ablation characteristics of Polymers

nm

30µm

PMMA, 1 pulse, 1.3 J/cm²

PTFE, 1 pulse, 1.3 J/cm²

EUV damage: EUV diffraction

Laser-Laboratorium Göttingen e.V.

Diffraction @13.5 nm

- Verification of EUV wavelength
- Influence of higher wavelength to ablation
- > Diffractive element : etched mesh

imprint in PMMA

* > calculated diffraction pattern

EUV Damage: Optics

Laser-Laboratorium Göttingen e.V.

Damage of thin gold films (grazing-incidence EUV mirrors)

EUV Damage: Substrates

Laser-Laboratorium Göttingen e.V.

nm 200 nm Damage of Silicon -3 5µm 10µm 100 wafers at different 2 **EUV** energy 0 1 -100 **densities** 0 10µm 15µm -200

Damage of fused silica

Damage of calcium fluoride

EUV reflectometry

Reflectometry @ 13.0 nm wavelength

EUV reflectometry: Optics

Laser-Laboratorium Göttingen e.V.

Kirkpatrick-Baez

- > 2 cylindrical mirrors
- > Shape by bent wafers
- Gold / Carbon layer mirrors

Multilayer-Laue Lenses

Novel optics for soft x-rays

Laser-Laboratorium Göttingen e.V.

Zone-plate

- Absorbing / transmitting rings
- Suitable for EUV/XUV spectral range

Multilayer Laue lens

- Absorbing / transmitting layers
- Corresponds to cylindrical lens

absorbing Material (ZrO₂)

transmitting Material (Ti)

Herstellung der Multilayer Laue Lens

Laser-Laboratorium Göttingen e.V.

LLG Mitarbeiterseminar

Multilayer Laue Lens

Laser-Laboratorium Göttingen e.V.

LLG Mitarbeiterseminar

M. Reese, H.U.Krebs, K. Mann et al. Appl. Phys . A 102 (2011)

Knife-edge measurement

MLL: Simulation

Laser-Laboratorium Göttingen e.V.

Numerical simulation of single MLL

EUV wavefront sensor

Suitable for 2-20 nm wavelength radiation

Wavefront sensor: Photo

Test of EUV wavefront sensor at Free-electron laser (FLASH)

B. Flöter, K. Mann, K. Tiedtke et al. NIM A 635, S108–S112 (2011)