Table-top EUV/XUV source

Generating 2-20 nm wavelength radiation

Laser-Laboratorium Göttingen e.V. Hans-Adolf-Krebs Weg 1 D-37077 Göttingen

Spectrum of electromagnetic radiation

Principle of laser-produced plasma

Laser-Laboratorium Göttingen e.V.

High-energy laser focused on gaseous target

• Emission spectra depending on target gas

Laser-produced plasma

Focusing of laser plasma:

_aser-Laboratorium Göttingen e.V.

▲ Focusing of soft X-rays by ellipsoidal mirror

X-ray microscopy

Table-top microscope operating at $\lambda = 2.88$ nm

Laser-Laboratorium Göttingen e.V. Hans-Adolf-Krebs Weg 1 D-37077 Göttingen

Monochromatic radiation $@\lambda = 2.88$ nm

→ Table-top x-ray microscope

Laser-Laboratorium Göttingen e.V.

 N_2 plasma + Ti-Filter:

 $@\lambda = 2.88 \text{ nm}$

Table-top x-ray microscope

$\lambda = 2.88 \text{ nm}$

1 m

Micrographs $@\lambda = 2.88 \text{ nm}$

Micrographs $@\lambda = 2.88 \text{ nm}$

NEXAFS spectroscopy

Near-edge x-ray absorption fine-structure spectroscopy

> Laser-Laboratorium Göttingen e.V. Hans-Adolf-Krebs Weg 1 D-37077 Göttingen

NEXAFS - Principle

Laser-Laboratorium Göttingen e.V.

Absorption-edges in the XUV wavelength range (selected elements)

Fine-structure at absorption edge

- molecular orbitals
- oxidation states
- coordination of an absorbing element

NEXAFS - Measurement

_aser-_aboratorium Göttingen e.V.

310

320

Emission spectra of Krypton with and

Setup of NEXAFS Spectrometer

XUV – NEXAFS (2-5 nm)

EUV – NEXAFS (7-16 nm)

Laser-Laboratorium Göttingen e.V.

PCMO (Perovskite-type manganate)

NEXAFS spectra

Laser-Laboratorium Göttingen e.V.

Ca L-edge:

F.-C. Kühl, Bachelorarbeit (2013)

EXAFS: CI L-edge of NaCl

MnCl2 and Fe2O3

Brilliance improvement by density enhancement

The barrel shock

EUV damage

Material interaction studies with 13.5 nm radiation

Laser-Laboratorium Göttingen e.V. Hans-Adolf-Krebs Weg 1 D-37077 Göttingen

EUV Schwarzschild Objective

Laser-Laboratorium Göttingen e.V.

Schwarzschild Objective

- Magnification 10:1
- High numerical apterture (0.4)
- Generation of high energy densities

EUV Damage: Optics

Laser-Laboratorium Göttingen e.V.

▲ Damage of thin gold films (grazing-incidence EUV mirrors)

EUV Damage: Substrates

Laser-Laboratorium Göttingen e.V.

▲ Damage of fused silica

Damage of calcium fluoride

EUV reflectometry

Reflectometry @ 13.0 nm wavelength

Laser-Laboratorium Göttingen e.V. Hans-Adolf-Krebs Weg 1 D-37077 Göttingen

EUV reflectometry: Setup

EUV reflectometry: examples

EUV Beam characterization

Wavefront sensor and coherence measurements

Laser-Laboratorium Göttingen e.V. Hans-Adolf-Krebs Weg 1 D-37077 Göttingen

Wavefront sensor

Test of EUV wavefront sensor at Free-electron laser (FLASH)

EUV wavefront sensor: Beam adjustment at FLASH

Laser-Laboratorium Göttingen e.V.

Spot

Adjustment of beam line

B. Flöter, K. Mann, K. Tiedtke et al. NIM A 635, S108-S112 (2011)

Göttingen e.V. FEL beam **Phosphor coated screen** Focal plane Long working distance microscope Microscope 10x CCD camera Ellipsoidal mirror Phosphor screen **Translation stage CCD** camera Intensity distribution Beam diameter d_x , d_v [µm] 300 450 200 400 100 350 y[µm] 300 250 200 -100 150 -200 100 50 -300 z [mm] -300 -200 -100 100 200 300 0 50 100 150 200 x[µm]

Caustic measurement at FLASH

_aser-Laboratorium

Coherence calculation by the Wigner distribution function

-0.05

0.05

0.1

Laser-Laboratorium Göttingen e.V.

x[µm]

x[um] x[um]

0.15

Wigner distribution function

